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Abstract. Accurate and high-resolution snowfall and fresh snow forecasts are important for a range of economic
sectors as well as for the safety of people and infrastructure, especially in mountainous regions. In this article a
new hybrid statistical postprocessing method is proposed, which combines standardized anomaly model output
statistics (SAMOS) with ensemble copula coupling (ECC) and a novel re-weighting scheme to produce spatially
and temporally high-resolution probabilistic snow forecasts. Ensemble forecasts and hindcasts of the European
Centre for Medium-Range Weather Forecasts (ECMWF) serve as input for the statistical postprocessing method,
while measurements from two different networks provide the required observations.

This new approach is applied to a region with very complex topography in the eastern European Alps. The
results demonstrate that the new hybrid method allows one not only to provide reliable high-resolution forecasts,
but also to combine different data sources with different temporal resolutions to create hourly probabilistic and
physically consistent predictions.

1 Introduction

Large parts of our daily social and economic life strongly
rely on weather forecasts. In this article we focus on the gov-
ernmental area of Tyrol, Austria, which is located in the east-
ern Alps and consists of a large number of narrow valleys
surrounded by high mountains. The economic backbone of
Tyrol is tourism with more than 5.3 million visitors and more
than 25 million overnight stays recorded during the winter
season 2013/14 (Amt der Tiroler Landesregierung, 2014).
In winter tourism strongly focuses on Alpine outdoor sports
such as skiing and back-country skiing, for which resorts
and skiing areas need sufficient amounts of snow and good
snow conditions. On the other hand, the “white gold” can
also cause hazardous situations. During the winter seasons
2009–2016 145 people died in avalanche accidents in Aus-

tria (Lawinenwarndienst Tirol, 2009–2017), of which more
than half of all events and deaths occurred in Tyrol. Further-
more, severe snow events can obstruct traffic on roads, on
train tracks and at airports. Accurate and reliable forecasts of
fresh snow and snowfall for the region of Tyrol are therefore
of high importance for the public and also for decision mak-
ers or warning services (see, e.g., Zhu et al., 2002; Palmer,
2002; Neal et al., 2014; Knox et al., 2015; Raftery, 2016).

Weather forecasts are typically provided by numerical
weather prediction (NWP) models predicting the future at-
mospheric state on a global or regional scale. Due to differ-
ent influencing factors such as the model resolution, neces-
sary approximations and parameterizations but also imper-
fect initial conditions and the chaotic behavior of the atmo-
sphere, these forecasts are never fully exact. Ensemble pre-
diction systems (EPSs) address these issues by running sev-
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eral independent forecasts for the same day using different
and slightly perturbed initial conditions and model formu-
lations to provide valuable additional information about the
uncertainty of a specific weather forecast. Due to the spa-
tial discretization of the underlying NWP model the EPS can
only depict information on a grid-scale level and is not able
to provide reliable information on the point scale. Thus, EPS
forecasts typically show too little spread (Hagedorn et al.,
2012; Mullen and Buizza, 2001) and require additional cor-
rection of the EPS uncertainty to enhance the predictive skill
for specific locations. One widely accepted procedure to re-
duce possible forecast errors and to adjust the uncertainty
information is statistical ensemble postprocessing. Statistical
postprocessing methods use historical weather forecasts and
the corresponding observations to detect and correct possible
systematic EPS errors.

A wide range of different ensemble postprocessing meth-
ods have been proposed, including analog methods (Hamill
et al., 2006, 2015), ensemble dressing methods (Roulston
and Smith, 2003), extended logistic regression (Wilks, 2009;
Bouallègue and Theis, 2014; Messner et al., 2014b), a non-
homogeneous mixture model approach with similarities to
Bayesian model averaging (BMA; Sloughter et al., 2007;
Fraley et al., 2010), or distributional regression methods.
Distributional regression models optimize the parameters of
a pre-specified response distribution to correct for both er-
rors in the mean and errors in the uncertainty, given a set
of covariates. One of the earliest and most well-known ap-
proaches is the ensemble model output statistics (EMOS)
approach first published by Gneiting et al. (2005) and ap-
plied to near-surface temperature. This approach has further
been extended by Thorarinsdottir and Gneiting (2010), Lerch
and Thorarinsdottir (2013), Scheuerer (2014), Scheuerer and
Hamill (2015), Messner et al. (2014a), Scheuerer (2014),
Scheuerer and Hamill (2015) and many others for different
meteorological quantities using different response distribu-
tions and optimization approaches.

Originally, distributional regression was only applied to
specific locations, but has also been extended for spatial and
even spatio-temporal corrections of the ensemble forecasts.
Many of these extensions are based on anomalies (Scheuerer
and Büermann, 2014) or standardized anomalies (Dabernig
et al., 2017; Stauffer et al., 2017b) to account for location-
specific characteristics in mean and variance and create cor-
rected and fully probabilistic spatial predictions of temper-
ature and daily precipitation sums over potentially complex
terrain.

In terms of snow prediction several difficulties have to be
considered. The availability and quality of good and reliable
snow observations are sparse, even in the region of Tyrol.
Measuring snow can be tricky due to possible snow drift,
melting processes, or liquid water input (rain) between two
observation times, which can yield large measurement errors
(Rasmussen et al., 2012). Overall, the amount and quality

of snow measurements make it very difficult to train reliable
spatial postprocessing models.

An alternative approach to predict fresh snow amounts is
to make use of precipitation and temperature forecasts rather
than directly to predict snow. The postprocessed temperature
and precipitation forecasts can then be used as a proxy to re-
trieve fresh snow amounts and snowfall forecasts. The tem-
perature forecasts are on the one hand required to determine
whether precipitation reaches the ground as rain or snow and
on the other hand to estimate the snow density. Snow density
and its alteration are affected by the prevalence of inversions,
additional cooling effects due to melting and evaporation of
hydrometeors, and other local effects, and are thus an ex-
tremely complex issue itself. For simplicity we will only re-
gard the problem of whether precipitation occurs as snow or
rain and assume that precipitation will fall as snow as soon
as the 2 m dry air temperature falls below +1.2 ◦C, a thresh-
old used in the literature for the European Alps (Rohregger,
2008; Bellaire et al., 2011).

Major challenges of converting probabilistic precipitation
and temperature forecasts into fresh snow predictions are
the very different temporal resolutions of ensemble predic-
tions, temperature observations, and precipitation observa-
tions. European Centre for Medium-Range Weather Forecast
(ECMWF) hindcast and EPS forecasts, which we use in this
study, have a temporal resolution of 6 and 1 h, respectively,
temperature observations are usually available hourly, and
precipitation or snow heights are often only measured once
or a few times a day.

In this article we propose a new hybrid approach that
combines standardized anomaly model output statistics
(SAMOS; Dabernig et al., 2017; Stauffer et al., 2017b) with
ensemble copula coupling (ECC; Schefzik et al., 2013) and
a novel re-weighting scheme to combine these data to

i. create full probabilistic spatial predictions,

ii. provide probabilistic temperature and precipitation
forecasts on an hourly temporal scale, and

iii. create a physically consistent copula (pair of tempera-
ture and precipitation) which can be used to

iv. create spatially and temporally high-resolution snowfall
and fresh snow amount forecasts.

The structure of this article is as follows. Section 2 intro-
duces the different statistical methods required to achieve the
desired goal. The methods section is followed by the descrip-
tion of the different data sets used in this study (Sect. 3) and
the explicit specification of the statistical models (Sect. 4)
used in the results section (Sect. 5). At the end the results
and limitations of this approach will be discussed (Sect. 6).
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2 Methods

This section contains the three methodological blocks re-
quired to create probabilistic snow forecasts. Distributional
regression is explained in Sect. 2.1 followed by the required
extensions for the SAMOS in Sect. 2.2. Section 2.3 shows
the ensemble copula coupling (ECC) approach to generate a
postprocessed ensemble followed by the re-weighting proce-
dure in Sect. 2.4 which is required to transform daily precip-
itation sums into hourly predictions. Finally, hourly temper-
ature and precipitation sums will be converted into probabil-
ities of snowfall and fresh snow amounts in Sect. 2.5.

2.1 Distributional regression

Statistical methods considering all parameters of a specific
response distribution can be summarized as “distributional
regression models”. The EMOS for temperature using a nor-
mal response distribution as originally suggested by Gneiting
et al. (2005) can be seen as a classical example of this family.

Imagine a time series of 2 m temperature observations
y = {yi}i=1, ..., N at a specific site and the corresponding
ensemble forecasts of the 2 m temperature from the EPS
x= {xim}

m=1, ...,M
i=1, ..., N where N denotes the total sample size of

the data set and M the number of ensemble members. xim
is the individual 2 m temperature prediction of the NWP for
date/time i of member m. The EMOS, which slightly dif-
fers from the original EMOS as proposed by Gneiting et al.
(2005), is specified as

yi ∼N
(
µi,σi

)
, (1)

µi = β0+β1 · xi, (2)
log(σi) = γ0+ γ1 · 〈xi〉. (3)

The response yi is assumed to follow a normal distribu-
tion N with the two distributional parameters µi (location
or mean) and σi (scale or standard deviation). Both param-
eters are expressed by a linear predictor including an inter-
cept (β0/γ0) and a slope coefficient (β1/γ1) for a covariate.
While the location µi depends on the ensemble mean xi over
all members m= 1, . . ., M for each individual sample i, the
log scale depends on the logarithm of the corresponding en-
semble standard deviation denoted as 〈xi〉. The log link on
σi ensures positive variance in predictions.

The coefficients θ = (β0,β1,γ0,γ1) can be estimated by
using an appropriate M estimator such as the maximum-
likelihood estimator maximizing the likelihood:

θ̂ = argmax
θ

(
N∏
i=1
φ

(
yi −µi

σi

))
, (4)

where φ
(
yi−µi
σi

)
denotes the standard normal probability

density function (PDF) evaluated at each individual i =
1, . . ., N in the data set.

For the daily precipitation sums the model shown in
Eqs. (1)–(3) can be improved by replacing the response dis-
tribution and adding an additional covariate z which allows
one to account for EPS forecasts where the majority of all
EPS members predict no precipitation. Following the work
of Gebetsberger et al. (2017) and Stauffer et al. (2017a), the
model specification can be written as follows:

y
1/p
i = L0

(
µi,σi

)
, (5)

µi = β0+β1 · x
1/p
i · (1− zi)+β2 · zi, (6)

log(σi) = γ0+ γ1 · 〈x
1/p
i 〉 · (1− zi). (7)

The power-transformed observations yi are assumed to fol-
low a left-censored logistic distribution L0 censored at 0
and a power parameter p = 1.35. The additional covariate
zi takes 1 if 80 % or more of all ensemble members predict
less than 0.05 mm over 24 h and 0 otherwise and is used to
handle unanimous predictions (cf. Gebetsberger et al., 2017).
The corresponding M estimator can be written as

θ̂ = argmax
θ

(
N∏
i=1
f

(
y

1/p
i −µi

σi

))

with f =


3
(
−µi
σi

)
if yi = 0

λ

(
y

1/p
i −µi
σi

)
else

, (8)

where λ is the PDF and 3 the cumulative distribution func-
tion (CDF) of the standard logistic distribution.

2.2 SAMOS

While the model specifications in Eqs. (1)–(3) and (5)–(7)
work well for single stations, an extension is required for spa-
tial and/or spatio-temporal ensemble postprocessing. In the
following, we will employ the SAMOS approach (Dabernig
et al., 2017; Stauffer et al., 2017b) for this purpose. Its basic
idea is to remove location- and time-specific characteristics
from the observation and EPS data by transforming them into
standardized anomalies. This transformation then allows one
to fit a single postprocessing model that is valid for the whole
area and all season and can thus be applied to any location
and time.

Standardized anomalies of the observations (y∗) and EPS
forecasts (x∗, for each memberm ∈M) will be characterized
by a superscript asterisk from here on and are defined as

y∗i =
yi − µ̃y,i

σ̃y,i
and x∗im =

xim− µ̃x,i

σ̃x,i
. (9)

µ̃ q, i and σ̃ q, i are the estimates of the climatological loca-
tion and scale for each required quantity and depend on the
location and season respectively. A comprehensive descrip-
tion of how these climatologies are specified can be found

www.adv-stat-clim-meteorol-oceanogr.net/4/65/2018/ Adv. Stat. Clim. Meteorol. Oceanogr., 4, 65–86, 2018



www.manaraa.com

68 R. Stauffer et al.: Hourly probabilistic snow forecasts over complex terrain

in Appendix A. Once the climatologies and thus the stan-
dardized anomalies are known, the SAMOS regression coef-
ficients can be estimated using Eqs. (1)–(8) by simply replac-
ing yi and xi by their corresponding standardized anomalies
y∗i and x∗i (except in the condition in Eq. (8) where yi = 0 is
not replaced). Given a new EPS forecast, the postprocessed
predictions can be obtained by applying the SAMOS correc-
tion. As the regression coefficients θ̂ are time and location in-
dependent, the correction can be performed on the EPS grid
scale. Spatial predictions can be retrieved by bilinearly inter-
polating the resulting location (µ∗) and scale (σ ∗) parameters
to the desired spatial resolution and transforming the results
back to the original scale (e.g., ◦C or mm). Algorithm 1 con-
tains the pseudo-code for the SAMOS procedure as used for
this article.

2.3 Ensemble copula coupling

The SAMOS procedure (Sect. 2.2) provides postprocessed
probabilistic predictions for 2 m temperature as well as cor-
rected probabilistic forecasts for 24 h precipitation sums.
Due to the model specification, SAMOS allows one to re-
trieve predictions for any arbitrary location within the area
of interest (spatial prediction) and even for all forecast steps
covered by the training data set (temporal predictions) with
one set of regression coefficients. This allows one to cre-
ate forecasts for +30/+54/+78 h for the 24 h precipitation
sums, and hourly forecasts for 2 m temperature for the whole
study area.

In order to retrieve probabilistic snowfall forecasts from
the SAMOS predictions, the marginal predictive distribu-
tions of temperature and precipitation have to be combined
such that correlations between them are considered. This
can be achieved by using ensemble copula coupling (ECC)
proposed by Schefzik et al. (2013). The basic idea is to re-
store the physical coupling between two or more quantities
based on the rank order structure of the raw EPS. As numer-
ical predictions are based on physically consistent prognos-
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tic equations, each EPS member provides a distinct physi-
cally meaningful combination of temperature and precipita-
tion. This property is lost during the SAMOS postprocessing
since both quantities are corrected independently. However,
the coupling can be restored by drawing a sample of the post-
processed predictive distributions and rearranging the sam-
pled values in the rank order structure of the original EPS
forecasts. ECC is applied to each target location individually
to restore the spatial correlation structure of the EPS.

There are different ways to draw a new sample from the
postprocessed distributions. It turned out (not shown) that
the quantile mapping approach with equidistant probabil-
ities (ECC-Q; Schefzik et al., 2013) yields the best and
most stable results for this application, which supports the
findings of Schefzik et al. (2013). For ECC-Q, a set of
M = 50+ 1 ensemble members is drawn from the postpro-
cessed distribution based on equidistant probabilities. In the
case of the 2 m temperature SAMOS returns hourly esti-
mates for location µ̂j and scale σ̂j of a Gaussian distribu-
tion (Eq. 3; Algorithm 1 step 4iv). Using the inverse Gaus-
sian CDF8−1(π | µ̂j , σ̂j ) with equidistant probabilities π =

1
M+1 , . . .,

M
M+1 a new 50+ 1-member temperature ensemble

can be retrieved from the postprocessed distribution.
The very same can be done for the daily precipitation

sums using the inverse distribution function of the power-
transformed left-censored logistic distribution:

3−1
0
(
π | µ̂j , σ̂j ,p

)
=max

(
0, 3−1(π | µ̂j , σ̂j )

)p
, (10)

where 3−1 is the inverse CDF of the uncensored logistic
distribution. Due to the left-censoring at 0, some of the M
quantiles can fall on the censoring point, with an increasing
number of 0s with decreasing location µ̂j and vice versa.
For situations where precipitation is very unlikely µ̂j might
be highly negative, which yields a postprocessed ensemble
where all M members predict exactly 0 mm 24 h−1. How-
ever, there is still the problem that our two quantities are not
available on the same temporal scale. To be able to restore
the full EPS rank order structure on an hourly temporal res-
olution the postprocessed daily precipitation sums first have
to be downscaled to an hourly interval.

2.4 Precipitation re-weighting

Temperature and precipitation observation data are based on
two different observational networks with different temporal
resolutions. The 2 m temperature observations are available
hourly, while precipitation sums are only reported once a day
(details in Sect. 3.3). This temporal resolution is maintained
by the SAMOS postprocessing so that it also differs for the
forecasts of the different quantities.

As temperature shows a clear diurnal cycle, it is crucial
to know at which time of day precipitation is expected to
be observed, as the timing can highly affect the precipitation
phase and thus the total fresh snow amount. Therefore, the

precipitation forecasts have to be temporally downscaled be-
fore they can be combined with the temperature forecasts.
For this purpose, we extend ECC (Sect. 2.3) with a novel
re-weighting scheme where the daily precipitation sums are
allocated to the hours of the day according to the time series
of the raw EPS predictions. For example, if an EPS member
predicts 10 % of its daily precipitation to fall between 10:00
and 11:00, 10 % of the corresponding precipitation forecast
is allocated to this hour. This allows one to downscale each of
the M = 50+ 1 draws from the marginal precipitation to an
hourly temporal resolution and to combine the hourly precip-
itation predictions afterwards with the respective draws from
the marginal temperature distribution. Algorithm 2 shows
the temporal downscaling procedure to generate hourly pre-
cipitation copulas from the postprocessed daily precipitation
sums.

For stability reasons, the weights ω are computed using
values for ŷjm and tpjm rounded to two digits ( 1

100 mm d−1)
to avoid weights close to infinity. If ŷjm or tpjm is 0, the
corresponding weight is set to 0 as well. After re-weighting,
the precipitation forecasts are at the very same temporal
resolution as the temperature forecasts and the rank order
structure can be restored with respect to the underlying EPS
(Sect. 2.3). This procedure is repeated for each target loca-
tion, e.g., on a regular grid with a much finer resolution than
the underlying NWP, to create high-resolution spatial predic-
tions.

Due to the ensemble copula (Sect. 2.3) and the re-
weighting procedure the full probabilistic predictions as re-
turned by SAMOS are reduced to a 50+1-member ensemble.
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This is necessary as the precipitation postprocessing uses a
censored response distribution and a parametric decomposi-
tion is not possible (central limit theorem). As a side note it
has to be mentioned that the ranks of the hourly copulas are
no longer strictly preserved and might sometimes differ from
the original rank structure of the EPS.

2.5 New snow amount and probability of snow

Once ECC-Q and re-weighting are applied to the marginal
distributions, bi-variate time series of calibrated hourly pre-
cipitation sums and 2 m temperatures are available for each
of the M ensemble members. For each individual pair of
member m and forecast step s the “snow indicator function”
SIms can be retrieved.

SIms =



“dry” if

precipitationms ≤ 0.05mmh−1

“rain” if

precipitationms > 0.05mmh−1
∧ T2 m > 1.2◦C

“snow” if

precipitationms > 0.05mmh−1
∧ T2 m ≤ 1.2◦C

(11)

The threshold of 0.05 mmh−1 has been chosen as the
smallest recorded value of the rain gauges used for valida-
tion is 0.1 mm. To distinguish between rain and snow we use
a fixed threshold of 1.2 ◦C as a rough approximation, follow-
ing Bellaire et al. (2011, p. 1121). The empirical probabilities
πcs for each of the three classes (snow, rain, and dry, which
are mutually exclusive for each individual member and fore-
cast time step) or for combinations can be computed using

πcs =
1
M

M∑
m=1

1(SIms = c), (12)

where s is a specific forecast step and c is the desired class
(e.g., snow, rain, rain∨ snow). 1(·) is an indicator function
which takes 1 if the argument in brackets is true or 0 other-
wise. The conditional expectation can be derived similarly:

E[c] =

∑M
i=1precipitationms · 1(SIms = c)∑M

i=11(SIms = c)
. (13)

If one is interested in the snow height of fresh snow
(E[snow] in centimeters), the snow density has to be taken
into account. A rule of thumb is the “1 : 10 rule” where
1 mm of liquid water equivalent, the quantity forecasted
by the postprocessing, corresponds to 1 cm of fresh snow.
This is equivalent to a fresh snow density of 100 kg m−3.
In reality, fresh snow densities can vary strongly between
10 and 526 kg m−3 given location and prevailing conditions
(e.g., Meister, 1985; Judson and Doesken, 2000; Roebber
et al., 2003). As reliable fresh snow height or density obser-
vations with the desired temporal resolution are not available

for this study, a detailed verification cannot be performed.
For visual representation we simply assume a mean density
of 100 kg m−3.

3 Data

This section presents the data sets used for this study. These
consist of two different EPS forecast data sets (ECMWF
hindcast and operational EPS) and three different sources of
observation data for model training and verification.

3.1 Numerical weather prediction data: forecast data

All predictions presented in this article are based on the
ECMWF EPS. The ECMWF EPS consists of 50 perturbed
ensemble members and 1 control run (50+ 1) and is initial-
ized four times a day every 6 h. For this study, the control run
is treated the same way as the 50 perturbed members. We will
solely focus on the 00:00 UTC forecast run of EPS model
version 43r1. This version became operational on 22 Novem-
ber 2016 and the output is available at an hourly temporal
resolution up to +90 h ahead on a ∼ 16 km× 16 km regular
longitude–latitude grid. A visual representation of the grid is
shown in Fig. 1.

The presented application will focus on the winter season
2016/17 (1 December 2016 through 15 April 2017) and on
predictions from+6 h to+78 h in advance, spanning the first
3 days after EPS initialization (06:00 to 06:00 UTC of 3 con-
secutive days).

3.2 Numerical weather prediction data: training data

To train the SAMOS models we use ECMWF hindcasts, sim-
ilar to the approach of Stauffer et al. (2017b). ECMWF hind-
casts become available twice a week (Mondays and Thurs-
days), providing a 10+1 member ensemble for the same date
over the previous 20 years, initialized at 00:00 UTC. For ex-
ample: on Monday 2 January 2017 hindcasts for 2 January
2016, 2015, . . ., 1998, and 1997 become available. As for the
EPS, the hindcast control run is treated as an additional mem-
ber to increase the ensemble sample size. The hindcasts are
available at the same spatial resolution as the EPS, but at a
6-hourly temporal resolution only. To create the training data
set for the statistical postprocessing models all hindcasts are
bilinearly interpolated to each of the measurement sites (see
Sect. 3.3). Overall, 235 different grid points from the numer-
ical model are involved in the interpolation for all 199 sites.

For the statistical postprocessing methods of 2 m temper-
ature, all 6-hourly intervals from +6 to +78 h will be used.
Besides the forecasted 2 m temperature the 2 m dew point
temperature, 850 hPa temperature, and surface pressure fore-
casts are used as additional covariates (see Sect. 4). For pre-
cipitation, 24 h total precipitation sum hindcasts are used for
the forecast time steps +30, +54, and +78 h.
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3.3 Observational data

Two major different observation networks will be used in the
following. As in Stauffer et al. (2017b), daily liquid water
equivalent observations from the Tyrol network of hydro-
graphical services (EHYD; BMLFUW, 2018) are used for
the postprocessing of daily precipitation sums. In compari-
son to other networks in the area, the hydrographical service
maintains the highest density of stations (number of stations)
with very long historical records (up to 47 years of data).
The observation sites are well distributed up to an altitude of
about 1800 m a.m.s.l. However, observations are only made
once a day (manually) at 06:00 UTC. In the following, the
observations from 110 sites in and around Tyrol are used to
train the precipitation SAMOS models.

The second network consists of 89 automated weather
stations operated by the national weather service (TAWES
network; Zentralanstalt für Meteorologie und Geodynamik).
Seventy-five out of these 89 stations provide at least 6 years
of data. Observations are recorded every 10 min, of which
all observations at every full hour are used for training and
validation of the 2 m air temperature SAMOS models.

The TAWES network also provides automated precipi-
tation measurements at a 10 min resolution. However, the
length of historical records is much shorter compared to the
time series provided by EHYD data set. Furthermore, the
measurement errors of the automated rain gauges are ex-
pected to be larger than the errors from the daily manual
records provided by the hydrographical service, especially
during winter. Thus, we decided to not use the TAWES pre-
cipitation observations for model training and for the es-
timates of the spatio-temporal climatologies. Nevertheless,
since observations from the hydrographical service are only
available up to 2012 at this time (2018), we do use TAWES
precipitation observations for validation. Therefore, daily
precipitation sums are generated by taking the sum over all
10 min intervals between 06:10 and 06:00 UTC of the follow-
ing day (yields 144 10 min values). Periods for which more
than four 10 min values are missing are eliminated.

In addition to the temperature and precipitation observa-
tions from the hydrographical service and the TAWES net-
work, meteorological aerodrome reports (METARs) from
Innsbruck Airport are used in the verification section as it
is the only longer-term source of temporally high-resolution
precipitation-phase observations available. The weather con-
ditions from the METARs are classified as “snow” (if
the report contains SN, SG, IC, PL, SNRA, or RASN),
“rain” (if the message contains DZ, RA, SNRA, or RASN),
and “dry” (else). Conditions with sleet (mixed rain/snow;
SNRA/RASN) are attributed to both “snow” and “rain”.
METARs are available every 30 min, created by either a hu-
man observer or an automated procedure if the airport is
closed over night. These observations have been aggregated
to an hourly temporal resolution and will be used to validate
the forecasted probabilities of snowfall. Overall, 3318 obser-

vations are available for the time period of interest, with 333
cases reporting rain or sleet (10 %), 246 cases snow or sleet
(7.5 %), and 2786 cases dry conditions (84 %).

Figure 1 shows an overview of the area of interest. The
markers show the locations of the observational sites from
the two networks (TAWES, EHYD) and the location of the
airport (581 m a.m.s.l.). To the right the height distribution of
the stations from the two networks is shown.

4 Statistical models

This section presents the specifications of the models that
will be compared and tested in Sect. 5. During the prepara-
tion of this paper, a variety of slightly different model formu-
lations were tested and the presented models are only a sub-
set that was selected because they performed well or showed
interesting results.

All the models follow the approaches presented in Sect. 2
but differ in their input variables and whether the data are
transformed to standardized anomalies. Four models will be
used for 2 m temperature and three for daily precipitation
sums. The training data set to estimate the regression co-
efficients is composed of all forecast steps provided by the
ECMWF hindcasts from +6 up to +78 h on a regular 6 h
interval. For precipitation, these forecasts are aggregated to
24 h sums, resulting in forecast steps +30, +54, and +78 h.
The power parameter was set to p = 1.35, found to have the
best predictive cross-validated performance in Stauffer et al.
(2017b).

Table 1 shows the different model assumptions and nam-
ing. The first two models named EMOS correspond to
Eqs. (1)–(8) operating on the physical scale (not on standard-
ized anomalies). One crucial modification has to be made for
the 2 m temperature: interactions with factors for the time
of day (hour; 00:00/06:00/12:00/18:00 UTC) and the station
(station) are included to capture spatial and diurnal differ-
ences, yielding separate (and independent) coefficients for
each station and each time of day. For daily precipitation
sums, this extension has not been made as only 06:00 UTC
observations are included (no diurnal effect required) and
station-wise regression models partially returned highly un-
stable estimates due to the low number of observations for
each individual site. Please note that the EMOS models are
not designed for spatial or spatio-temporal predictions even
if spatial predictions would be possible in the case of precip-
itation. These two models serve as a reference for the perfor-
mance of the SAMOS models.

All other models are spatio-temporal (in the case of 2 m
temperature) and spatial (in the case of daily precipita-
tion sums) SAMOS models operating on the standardized
anomaly scale. Thus, the spatial and temporal characteristics
among all stations and for all lead times are already removed
from the data and do not have to be considered in the linear
predictors for location µ∗ and scale σ ∗.
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Figure 1. Panel (a) shows the topography of the area of interest. Overlays: center of the grid cells of the NWP model data (white crosses),
governmental area of Tyrol (black outline), location of the TAWES stations (89; circles) and EHYD stations (110; squares). The airport is
indicated by a diamond in the center of the map. Panel (b) shows the height distribution of the stations grouped into 300 m intervals: number
of stations (abscissa) and altitude intervals (ordinate; meters a.m.s.l.).

The second and third pairs of models, named SAMOS_hom
and SAMOS_het, are two SAMOS variations, both solely us-
ing the corresponding quantity from the EPS as a covariate
(i.e., 2 m temperature and total precipitation, respectively).
While SAMOS_het is a full heteroscedastic model includ-
ing the ensemble standard deviation in the linear predictor
for the scale σ ∗, SAMOS_hom is a homoscedastic model
where the scale does not depend on any covariates. These
two models allow one to quantify the improvement in the
predictive performance by including the ensemble spread in-
formation in the postprocessing methods. For 2 m tempera-
ture, a fourth model called xSAMOS_het (x for extended) is
used, which includes additional covariates for both location
µ∗ and scale σ ∗. A set of multilinear models (not shown) has
been tested that includes different interactions and nonlinear
effects in the linear predictors, but no major improvements
have been found. Thus, a relatively simple model specifica-
tion for xSAMOS_het is included in this article to demon-
strate that SAMOS can easily be extended. The multilinear
xSAMOS_het contains three additional covariates as linear
main effects for both location µ∗ and scale σ ∗. For each of
the covariates separate regression coefficients are estimated
during model optimization which, in this case, yields 10 co-
efficients in total (one intercept and four covariates in each
linear predictor).

5 Results

The first two subsections show the performance of the full
predictive distributions of the 2 m temperature (Sect. 5.1) and
daily precipitation forecasts (Sect. 5.2). Section 5.3 shows a
example of the spatial coherence restored via ECC followed

by a detailed verification of hourly predictions and hourly
precipitation-type classification based on the postprocessed
ensembles. Last but not least, spatial forecasts for a specific
forecast are shown in Sect. 5.6 to demonstrate the feasibility
of high-resolution areal predictions.

5.1 Temperature (6 h intervals)

Figure 2 shows bias, continuous rank probability score
(CRPS; Gneiting and Raftery, 2007), mean width of the pre-
diction interval between the 10 % and 90 % percentiles, and
CRPS skill scores, all based on the full predictive distribution
returned by the statistical models. All results are temporally
out-of-sample and validated on the TAWES network for all
forecast steps+6/+12/ . . . /+72/+78 h as used to train the
statistical models on hindcasts. The box-and-whiskers show
station-wise mean scores for the spatio-temporal climatology
(CLIM; Eq. A1), the raw EPS, and the four statistical post-
processing models (cf. Table 1).

The raw EPS performs poorly for the area of interest as the
NWP model with its current spatial resolution is not able to
represent the local topography. It performs even worse than
the underlying climatology in terms of bias and CRPS. All
statistical postprocessing models perform significantly better
and are essentially bias-free. As expected, the station-wise
statistical EMOS model performs best since it has separate
model coefficients for each station location and is thus more
flexible than the spatial models. In terms of CRPS, the spatial
models lose about 7 %–12 % of skill (Fig. 2d; SAMOS_hom:
−12.3 %; SAMOS_het: −12.3 %; xSAMOS_het: −6.9 %),
but allow one to predict at any arbitrary location within the
area of interest and any desired time between +6 and +78 h.
The two models SAMOS_hom and SAMOS_het perform very
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Table 1. Statistical model specification for 2 m temperature (left) and 24 h precipitation sums (right). For each model the linear predictors
for µ and log(σ ) are shown. Superscript asterisk indicate variables on the standardized anomaly scale (SAMOS). T2 m, Td2 m, T850, P , and
tp are the 2 m temperature, 2 m dew point temperature, temperature in 850 hPa, surface pressure, and total precipitation ensemble forecasts
respectively. X are ensemble means, 〈X〉 denote ensemble log-standard deviations. X / hour and X / station are interactions between X and
the “time of the day” and/or the “station”.

Models for 2 m temperature using a Gaussian Models for 24 h precipitation sums using a power-transformed
response distribution. left-censored logistic response distribution.

Heteroscedastic EMOS models (EMOS; cf. Eqs. 1–3 and 5–7)
These models are not designed to provide spatial or spatio-temporal predictions.

µ = hour / station+T2 m / hour / station µ = tp1/p · (1− z)+ z
log(σ ) = hour / station+〈T2 m〉 / hour / station log(σ ) = 〈tp1/p

〉 · (1− z)

Homoscedastic SAMOS models (SAMOS_hom)

µ∗ = T ∗2 m µ∗ = tp1/p∗ · (1− z)+ z
log(σ∗) = constant log(σ∗) = constant

Heteroscedastic SAMOS models (SAMOS_het)

µ∗ = T ∗2 m µ∗ = tp1/p∗ · (1− z)+ z
log(σ∗) = 〈T ∗2 m〉 log(σ∗) = 〈tp1/p∗

〉 · (1− z)

Extended Heteroscedastic SAMOS models (xSAMOS_het)

µ∗ = T ∗2 m+Td∗2 m+ T
∗
850+P

∗ –
log(σ∗) = 〈T ∗2 m〉+ 〈Td∗2 m〉+ 〈T

∗
850〉+ 〈P

∗
〉 –

similarly, indicating that the uncertainty information from the
EPS 2 m temperature forecast provides barely any additional
information. Small improvements can be achieved by includ-
ing additional covariates (model xSAMOS_het).

Overall, all statistical models show promising values in
terms of CRPS (median 1.45–1.65 ◦C) and mean absolute
error (median 2.0–2.3 ◦C; not shown) across all four meth-
ods. The median of the mean prediction interval width for
the 10 %–90 % interval is around 6.0 ◦C for the station-wise
EMOS model and around 6.9–7.2 ◦C for the SAMOS models.

5.2 Daily precipitation sums

Figure 3 shows the verification of the daily precipitation
sum predictions for the forecast steps +30/+ 54/+ 78 h.
Again, this analysis is based on the full predictive distribu-
tion returned by the statistical models. Here, the validation
is done on different stations (TAWES) than used for model
fitting (EHYD; Sect. 3), so that these results are spatially
and temporally out of sample. The box-and-whiskers show
station-wise mean scores for the spatio-temporal climatol-
ogy (CLIM; Eq. A2), the raw daily accumulated total pre-
cipitation from the ECMWF EPS (raw EPS), and the three
postprocessing methods shown in Table 1.

The top row of Fig. 3 shows bias, CRPS, and the Brier
score for probability of precipitation (BS0 mm). The row be-
low shows skill scores with the raw EPS as reference. The
two SAMOS models (SAMOS_hom and SAMOS_het) show

the best bias among all methods but less predictive skill in
terms of MAE, CRPS, and BS0 mm than the EMOS model
not using standardized anomalies. The distinct improvements
in the BS0 mm are expected due to the well-known wet bias
of the EPS when comparing interpolated data (spatial scale)
to a specific site (point scale). As for 2 m temperature, the
use of the forecasted EPS uncertainty in the heteroscedas-
tic model (SAMOS_het) brings barely any improvement. The
performance of the EMOS model requires special attention.
Even if this model is not designed to create spatial predic-
tions the results show a slightly better performance than the
two SAMOS models.

5.3 Spatial coherence (ensemble copula coupling)

Sections 5.1 and 5.2 examine the predictive skill of the full
probabilistic predictions (SAMOS; Sect. 2.2). The next step
is to apply ECC-Q based on the postprocessed hourly 2 m
temperature forecasts and daily precipitation sums (Sect. 2.3)
to restore the spatial structure of the forecasts.

To illustrate the effect of ECC-Q, Figs. 4 and 5 show
forecasts for both 2 m temperature and daily precipitation
sums, of one random member (member 38) of the forecast
for 10 March 2017. Both figures show the actual forecasts
of this specific member and the deviation of this member
from the median of the full underlying ensemble. The lat-
ter one is used to highlight the spatial coherence which is
less perceptible in the forecasts itself due to the superimpo-
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Figure 2. Scores for 2 m temperature forecasts based on the full predictive distribution based on 6/+12/ . . . /+72/+78 h forecasts as used
for model training. The box-and-whisker shows station-wise means for (a) bias (observation minus forecast), (b) CRPS, (c) width of the
80 % prediction interval, and (d) CRPS skill scores with EMOS as reference. Scores are shown for the climatology (CLIM), the raw EPS, and
the four postprocessing models (cf. Table 1). Abscissa are set to manually specified ranges; the “semi-sphere” marker (top/bottom) indicates
data outside the plotted range.
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Figure 3. Scores for 24 h precipitation sums based on the full predictive distribution for +30, +54, and +78 h forecasts as used for model
training. Box-and-whiskers of station-wise mean scores for (a) bias (observation minus forecast), (b) CRPS, and (c) Brier scores for proba-
bility of precipitation. The scores are shown for the climatology (CLIM), raw EPS, and the three postprocessing models (cf. Table 1). The
lower row shows skill scores for (d) mean absolute error, (e) CRPS, and (f) Brier score for probability of precipitation with the raw EPS as
reference. Positive skill scores indicate an improvement over the raw EPS.

sition of location- and elevation-dependent effects. Forecasts
and deviations are shown for the raw ensemble, the quantiles
drawn from the full probabilistic predictions, and ECC-Q af-
ter restoring the rank order structure of the EPS.

As ECC-Q uses quantiles based on equidistant probabil-
ities, the quantiles drawn from the full probabilistic distri-
bution are ordered. Thus, the forecasts of member 38 (π =
38/52) are always higher than the median of the ensemble
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Figure 4. 2 m temperature forecasts of member 38 for 10 March
2017 00:00 UTC. Top–down: raw EPS (a, b), unsorted quan-
tile (c, d), and ECC-Q (e, f) after restoring the rank order structure.
Forecast (a, c, e; ◦C) and deviation of this forecast from the median
of the corresponding ensemble (b, d, f; ◦C) are shown. Overlays:
contours for positive deviation (dashed) and the borders of the gov-
ernmental area of Tyrol (solid). Please note that the color scale of
the top row differs from the scale of the two lower rows.

(π = 0.5) before the rank order structure is restored. This can
be seen in Figs. 4d and 5d, where the deviation against the en-
semble median is plotted. In this case the deviation is (more
or less) a constant positive offset across the whole domain
with only little spatial structure. These small spatial features
are induced by the SAMOS procedure where the data are
transformed into the standardized anomaly scale and back to
the physical scale (Sect. 2.2) and are not associated with the
spatial coherence of the EPS (cf. Figs. 4b and 5b). To restore
the spatial structure, the quantiles have to be reordered given
the rank order structure of the raw EPS at each of the target
locations. The bottom rows of Figs. 4 and 5 show the fore-
casts after rearranging the quantiles. In contrast to the non-
rearranged forecasts (middle row) the postprocessed fore-
casts with restored rank-order structure exhibit a very similar
spatial coherence to the raw EPS (top row of Figs. 4 and 5).
The coherence of the EPS is maintained unchanged in large
parts, but is not identical as it is slightly modified by the post-
processing procedure.

5.4 Hourly temperature and precipitation sums

Sections 5.1 and 5.2 show that the postprocessing models
are able to improve the predictive performance of the raw
EPS for temperature and daily precipitation sums. The main
goal of this study is to provide accurate and reliable snow
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Figure 5. As Fig. 4 but for daily precipitation sums valid 9 March
2017 06:00 UTC to 10 March 2017 06:00 UTC. Forecasts (a, c, e)
and deviations from the ensemble median (b, d, f) are shown in
mm 24 h−1. In contrast to Fig. 4 contours are plotted for negative
deviations.

predictions by combining hourly 2 m temperature and pre-
cipitation forecasts. Thus, an hourly temporal resolution for
both temperature and precipitation forecasts is required. This
section therefore shows the verification of hourly forecasts.
For temperature, the hourly forecasts are based on the spatio-
temporal SAMOS model xSAMOS_het as it shows the over-
all best performance among all tested spatial models. The
hourly precipitation sums are based on the predictions from
the SAMOS_het model downscaled to the desired tempo-
ral resolution using the re-weighting approach presented in
Sect. 2.4. Since the re-weighted precipitation forecasts are
only available as ensembles but not as full predictive distri-
butions, ensemble verification methods are employed in the
following.

Figure 6a–d show ensemble rank histograms (Hamill,
2001) for hourly temperature predictions and hourly precipi-
tation sums for the raw EPS and the postprocessed forecasts.
Each observation is assigned to a rank where observations
falling below the lowest member get rank 1 and observations
higher than the highest member get rank 52 (50+1 members,
52 possible ranks). A perfectly uniform distribution would
indicate perfect calibration. For temperature (Fig. 6a, b), the
postprocessing strongly improves calibration compared to
the raw EPS. However, the pronounced U-shape indicates
that the predicted uncertainty is lower than in reality (un-
derdispersion). A similar picture can be seen for the hourly
precipitation sums plotted as “stacked ensemble rank his-
tograms” (Fig. 6c, d). The total height of the bars given the
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www.manaraa.com

76 R. Stauffer et al.: Hourly probabilistic snow forecasts over complex terrain

Hourly 2 m temperature, raw EPS

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 7 13 19 25 31 37 43 49
Rank

D
en

si
ty

(a)
Hourly 2 m temperature, ECC−Q

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 7 13 19 25 31 37 43 49
Rank

D
en

si
ty

(b)

Hourly precipitation sums, raw EPS

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 7 13 19 25 31 37 43 49
Rank

D
en

si
ty

(c)
Hourly precipitation sums, ECC−Q

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 7 13 19 25 31 37 43 49
Rank

D
en

si
ty

(d)

Multivariate rank histogram, raw EPS

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 7 13 19 25 31 37 43 49
Rank

D
en

si
ty

(e)
Multivariate rank histogram, ECC−Q

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 7 13 19 25 31 37 43 49
Rank

D
en

si
ty

(f)

Figure 6. (Stacked) ensemble rank histograms for hourly 2 m tem-
perature (a, b) and hourly precipitation sum forecasts (c, d) plus
multivariate rank histogram (e, f) of the raw EPS (a, c, e) and post-
processed copula (b, d, f) with 50+ 1 members each. The rank his-
tograms contain all available forecasts for all stations and forecast
steps +7, +8, . . ., +78 h in advance. For precipitation, the faded
colors show the rank histogram for all forecasts where 50 % or more
of all members predicted 0 mm h−1. Please note that the y axis is
cut at 0.05 for all histograms.

rank shows the rank histogram of the full verification data set.
The faded colors show the calibration for all forecasts where
at least 50 % of all members forecasted 0 mm h−1 (dry cases).
It can be seen that the dry cases are relatively well calibrated
and that the majority of the underdispersion results from the
wet cases. Nevertheless, the asymmetry (decreasing density
with increasing rank) indicates a small wet bias also for the
dry cases.

To score the multivariate skill of the combined temperature
and precipitation forecasts, the bottom row of Fig. 6 shows
multivariate (bivariate) rank histograms (Gneiting et al.,
2008). In contrast to the univariate rank histograms the multi-
variate rank histogram takes the rank order structure between
the two quantities into account. As for the univariate rank his-
tograms the multivariate rank histogram shows much better
calibration of the postprocessed predictions but shows very
similar patterns to the two univariate histograms (Fig. 6a–c).

To investigate the univariate predictive performance of
hourly predictions for different forecast horizons, Fig. 7
shows CRPS skill scores for all individual lead times. Each
box-and-whisker contains station-wise mean skill scores
over the verification period. While always on a high level, the
2 m temperature forecasts for morning hours (+7 to 12, +31
to 36, +55 to 60, corresponding to 07:00–12:00 UTC) show
slightly less skill. For precipitation, the skill scores are over-
all positive but clearly decreasing with increasing forecast
horizon. The lowest skill scores are found for early morning
hours (+26 to 30, +50 to 54, +74 to 78; 02:00–06:00 UTC).

5.5 Fresh snow amounts and probability of snowfall

This section shows the verification for the main target vari-
able. Due to the limited availability of temporally high-
resolution and reliable observations this can only be done
for one site, the regional airport in Innsbruck (Fig. 1). Fig-
ure 8 shows reliability diagrams (Bröcker and Smith, 2007)
for the probability of precipitation (rain∨ snow), rain, and
snow. As Sect. 5.4 indicates that large parts of the improve-
ments are expected to come from temperature postprocess-
ing, three different models will be compared: the raw EPS,
the full ECC-Q, and a mixed version. The mixed version uses
the raw hourly precipitation forecasts from the EPS but the
postprocessed temperature predictions to examine the con-
tribution of the precipitation postprocessing. The validation
for all three methods is based on the classification described
in Sect. 2.5 and the aggregated METAR observations as de-
scribed in Sect. 3.3.

For all three precipitation classes ECC-Q is able to outper-
form the raw EPS (less off-diagonal) and shows lower Brier
scores and lower numbers for reliability while losing some
resolution. ECC-Q is also beneficial over the mixed ver-
sion using uncorrected precipitation sums. For snow the two
methods using postprocessed temperature forecasts (mixed
and ECC-Q) perform very similarly but show different bi-
ases. While the mixed model exhibits a wet bias (observed
frequencies larger than forecasted probabilities), ECC-Q
shows a dry bias. The results for snow should not be over-
interpreted as snowfall is relatively rare at this station (7.5 %
of all cases). The raw EPS again shows the well-known wet
bias in all three classes.

Next, Fig. 9 shows a forecast time series example for a ran-
dom station and a day when the temperature is just around
1.2 ◦C, the threshold used to decide whether the forecasted
precipitation will fall as snow or rain. As no fresh snow mea-
surements are available, a validation of the forecasted fresh
snow amounts cannot be performed for this case.

What can be seen is that the ECC-Q temperature pre-
dictions (Fig. 9a) show a much larger spread than the raw
EPS. The postprocessed temperature uncertainty dominates
the variation of the observed temperature over the whole
forecast period (days 1–3). The observations, however, nicely
fall into this interval, which yields the overall well-calibrated

Adv. Stat. Clim. Meteorol. Oceanogr., 4, 65–86, 2018 www.adv-stat-clim-meteorol-oceanogr.net/4/65/2018/



www.manaraa.com

R. Stauffer et al.: Hourly probabilistic snow forecasts over complex terrain 77

●

●● ●

●● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
● ●

●

●● ● ●
●

●
●

●
●

●●

●
●
●

●

●

●
●

●

●
●
●

●

●
●●

●

●●
●

●

●●

● ●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●
● ●

●

●
●
●

●● ●●
●●

●●

●●
●●

●
●
●
●

●

●
●●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
● ●

●

●
● ●

●● ●●● ●●
●●

●
●
●●

●●
●
● ●●

●

● ●

●●

●

●

●
●●

●

●

●
●●

●

●

●●●●

−50

0

50

C
R

PS
S 

[%
] f

or
ho

ur
ly

 te
m

pe
ra

tu
re

Station-wise mean CRPS skill scores for hourly copula (raw EPS as reference)
(a)

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●●
●●

●
●

●

●

●

●
●
●●
●
●
●
●

●

●

●

●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●
●● ●● ●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●
●

●

●●

●

●

●

●
●

●

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

−100

−50

0

50

Forecast step or lead time (hours)

C
R

PS
S 

[%
] f

or
ho

ur
ly

 p
re

ci
pi

ta
tio

n 
su

m
s

(b)

Figure 7. Continuous ranked probability skill scores (CRPSS) for 2 m temperature (a) and hourly precipitation sums (b) based on station-
wise mean empirical CRPS values (50+ 1 members). The raw EPS is used as a reference. CRPSSs are shown for each individual forecast
step from +7 to +78 after model initialization. CRPSSs above 0 (bold black line) show that the postprocessed hourly forecasts outperform
the raw EPS.
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Figure 8. Reliability diagrams for hourly predictions of precipitation (snow∨ rain; a), snowfall (b) and rain (c) at Innsbruck Airport based
on meteorological aerodrome reports (METARs) for the raw EPS (dashed) and the postprocessed forecasts (solid). Binning based on em-
pirical quantiles to ensure a similar number of observations per bin (bins indicated along the x axis). The shaded area shows the 90 %
confidence interval. Histograms: counts of the number of observations in each bin in the reliability diagram. The analysis is based on≈ 9700
observation–forecast pairs for each precipitation type. Mean Brier score (BS), as well as mean resolution (RES) and reliability (REL) from
a BS decomposition (Murphy, 1973), are shown in the lower right corner.

forecasts (see Fig. 6). For precipitation (Fig. 9c), the differ-
ences between the raw EPS and the postprocessed copula are
less pronounced. Fig. 9b shows the probability of snow∨ rain
(precipitation), rain, and snow as defined by Eq. (12). The ex-

pected amounts of snow∨ rain (precipitation) and snow from
the postprocessed forecasts are plotted in Fig. 9d. Rather than
plotting each individual ECC member, the median and two
confidence intervals are shown. For this specific date and
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location, the median shows 30.5 mm of precipitation (rain
and/or snow liquid water equivalent) accumulated over the
3 consecutive days, of which 8.4 mm is expected to fall as
snow. When assuming the 1 : 10 rule (Sect. 2.5) and not tak-
ing the alteration of the aging snow into account, this corre-
sponds to a median of 8.4 cm of fresh snow within 3 days.

5.6 Spatial forecast example

As a last result, Figs. 10 and 11 show a spatial forecast exam-
ple to demonstrate the ability to create high-resolution spatial
predictions. These results show the+48 h forecast initialized
8 March 2017 on an approximately 500m×500m grid (cor-
responds to the +48 h forecast shown in Fig. 9).

While Fig. 10 shows the probability of precipitation
(snow∨ rain), rain, and snow, Fig. 11 shows the expected
amount of precipitation for the period > 47 to +48 h. The
color coding represents the dominant precipitation type
based on πsnow,+48 h and πrain,+48 h (cf. Eq. 12). In addition,
the snow line (πsnow,+48 h > πrain,+48 h) is shown. For visual
purposes the spatial predictions are plotted for the whole do-
main even if parts of the area are already outside the area
covered by the stations used to create the underlying obser-
vation climatologies and to train the statistical models. Thus,
forecasts outside the dashed line (Fig. 10a) should be inter-
preted with caution. The individual EPS and ECC-Q mem-
bers used to derive probabilities and the expectation can be
found in Appendix B; one specific member is shown in more
detail in Sect. 5.3.

6 Discussion

This article presents a new hybrid approach to combine
standardized anomaly output statistics (SAMOS) with en-
semble copula coupling (ECC) and a novel re-weighting
scheme for probabilistic snow forecasts. The results demon-
strate that the new approach provides a framework for ac-
curate high-resolution spatio-temporal probabilistic forecasts
for 2 m temperature, precipitation, and snowfall over com-
plex terrain.

The use of ECMWF hindcasts for model training and
ECMWF EPS for prediction offers a computationally effi-
cient way to get the required inputs for the SAMOS method
(see Appendix A). Rather than estimating a complex spatio-
temporal climatology for each covariate (as in Dabernig
et al., 2017), only empirical moments (mean and standard de-
viation) of an appropriate hindcast subset have to be derived.
The latest eight hindcast runs (4 weeks) centered around the
date of interest are used to capture the seasonality. As this
processing step is very cheap in terms of computational costs,
one can easily derive hindcast climatologies for a range of
possible covariates, which allows for a simple and low-cost
multilinear extension of the SAMOS approach. Furthermore,
due to the use of a rolling 4-week training period, the post-
processing procedure automatically adapts itself to possible

changes in the underlying NWP model within a few weeks.
However, the rank histograms (Fig. 6) for both the 2 m tem-
perature and daily precipitation sums show a pronounced U-
shape. The same characteristics can be seen for all tested
postprocessing models (not shown) whether or not standard-
ized anomalies are used. The rank histograms for in-sample
predictions based on the training data set itself (not shown)
do not show this distinct pattern. A possible reason could be
that the forecasted uncertainty of the hindcasts and the uncer-
tainty information from the current EPS seem to differ. If the
EPS overall provided sharper forecasts than the hindcast on
which the regression coefficients are estimated, this would
also yield underdispersive predictions after postprocessing.
A detailed analysis of this specific issue was performed (be-
yond this article; not shown), but a clear statement to prove
or falsify the hypothesis cannot be given.

The additional ensemble copula coupling (ECC-Q;
Sect. 2.3) and re-weighting strategy yield satisfying results
and are able to restore the spatial coherence based on the
spatial structure of the raw EPS (Sect. 5.3, Appendix B).
However, the bivariate verification (Fig. 6) shows distinct un-
derdispersion. Additional tests have been performed to ver-
ify the improvement by restoring the multivariate rank or-
der structure. Therefore, the multivariate rank histogram has
been computed using random correlation by drawing a ran-
dom rank order structure from the ensemble. It turns out (not
shown) that the multivariate rank histogram with the ran-
dom rank order structure only differs marginally from the one
shown in Fig. 6 for both the raw EPS and ECC-Q. In other
words: the correlation between 2 m temperature and hourly
precipitation sums is negligible, at least for this study. Thus,
the impacts of the cases where the rank order structure is not
strictly preserved due to the re-weighting (Sect. 2.4) are not
further investigated as no verifiable effect is expected.

Nevertheless, the method is still able to strongly improve
calibration and reliability of the forecasts, especially for
2 m temperature, even though the sharpness is rather low.
The mean 80 % prediction interval width for temperature
is between 6.9 and 7.2 ◦C for the SAMOS methods. On a
rainy/snowy day this interval is quite likely wider than the
overall diurnal temperature variation. The relatively wide
predictive intervals are a result of the input data. Due to the
current spatial resolution, the EPS is not able to represent the
area of interest in all its details. Consequently, a wide range
of local features are not yet included. To mention one specific
feature: the EPS shows a far-too-strong near-surface cooling
over night, especially over snow. Errors of 15 ◦C between
the forecasted 2 m temperature and the corresponding ob-
servation are relatively frequent for Alpine grid points. Fur-
thermore, the forecasted EPS uncertainty does not seem to
be very informative as almost no improvements can be seen
when including it in the statistical models.

To improve the temperature forecasts, we include the tem-
perature from the 850 hPa level as an additional covariate,
which can be seen as a “free atmosphere” prediction over the
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Figure 9. Example prediction for 8 March 2017 (station 11315, Holzgau) for the whole forecast horizon+6 up to+78 h ahead. (a) Raw EPS
forecast (black), postprocessed copula (blue), and observation (red; bold) for 2 m temperature. The black dashed line is the 1.2 ◦C line used
for precipitation type classification. (b) Probability of snow (blue solid), rain (red dotdash), and precipitation (snow∨ rain; black dashed).
(c) Hourly precipitation forecasts and observations as in panel (a). (d) Postprocessed forecasts for precipitation sum (dashed; mm), and
fresh snow height (solid; cm) using the 1 : 10 rule (snow density of 100 kg m−3). Predicted medians, predicted 50 % intervals, and predicted
88.5 % intervals are shown.

area of interest. Furthermore, the 850 hPa temperature is a
prognostic quantity which should be less strongly affected
by possibly unrealistic surface processes (cooling/heating
effects). In addition, surface pressure and 2 m dew point
temperature are included to correct for weather-situation-
dependent errors and very dry/wet conditions. The model
shown in this article only includes the additional covari-
ates as linear main effects and is more a proof of concept.
We have also tested derived covariates such as 2 m poten-
tial temperature and nonlinear mixtures of 2 m temperature
and 850 hPa temperatures to allow high-elevation stations to
take the information from an elevated air mass (“free atmo-
sphere”) rather than from the near surface. As none of these

models showed large improvements, and for simplicity, we
decided not to show the results of these more complex mod-
els in this article. However, the “extended heteroscedastic
SAMOS model” demonstrates that the SAMOS model can
easily be extended by including additional covariates which
do not necessarily have to be linear. As shown, this allows
one to further improve the predictive performance, even with
this simple model. A more flexible SAMOS model might
bring further improvements, e.g., by including a larger set
of covariates, including interactions between the different
covariates, or by using more flexible effects such as multi-
dimensional effects which can be used to represent elevation-
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Figure 10. Top–down: 1 h probability of precipitation
(rain∨ snow), rain, and snow for 10 March 2017 00:00 UTC
(+48 h forecast initialized 8 March 2017). Overlays: the govern-
mental area of Tyrol (solid line), Innsbruck Airport (diamond), and
the location of the example station used in Fig. 9 (circle). The white
dashed line outlines the area not further away than 10 km from the
closest measurement site.

dependent effects and which will be worth investigating in
more detail in the future.

As the results show (Fig. 3), the EMOS model for daily
precipitation sums slightly outperforms the SAMOS models,
which is somehow unpleasant. A possible reason is that the
overall (not location-dependent) bias and slope correction is
of most importance and that this simple model is better able
to correct for it. A second reason could be that the underly-
ing observation climatology (which is an all-year climatol-
ogy; Appendix A) might not perfectly capture the cold sea-
son and causes the slightly worse predictive performance of
the SAMOS models. Further improvements of the underly-
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Figure 11. Expected 1 h amount of liquid water content for
10 March 2017 00:00 UTC (+48 h forecast initialized 8 March
2017). Areas with a higher chance of observing snow are shown
in blue, those with a higher chance of observing rain in red. The
dashed line (top) shows the forecasted snow line with an equal
chance of observing snow or rain (Eq. 12). Overlay: governmental
area of Tyrol (solid line).

ing climatology might be beneficial for the predictive skill of
the SAMOS results.

One of the biggest advantages of the proposed hybrid ap-
proach is that forecasts can be produced on the same tem-
poral scale as the current EPS even if the underlying data
sets used for model training (hindcasts and observations)
are available on coarser temporal scales or even different
timescales for different variables. This allows one to combine
the best information from (location-)independent sources to
get the most reliable probabilistic predictions possible. For
the present study, two observation networks have been com-
bined, one providing long-term daily precipitation records,
and one providing temporally highly resolved temperature
measurements.

Overall the 2 m temperature and precipitation forecasts
serve as a good proxy for probabilistic snowfall forecasts,
which is the main target variable of this study. The results
show very promising results in terms of calibration and relia-
bility of both the expected amount of precipitation and fresh
snow, but also the probability of observing snowfall at an
hourly temporal resolution.

Code and data availability. The main parts of this study are
based on R package bamlss (Umlauf et al., 2017) to compute
the spatio-temporal observation climatologies and R package crch
(Messner et al., 2016) to estimate the (censored) non-homogeneous
regression models. The continuous ranked probability scores are
based on R package scoringRules (Jordan et al., 2018).

Observations from the hydrographical service (BMLFUW, 2018)
can be downloaded from the website of the Bundesministerium für
Land und Forstwirtschaft und Wasserwirtschaft (http://ehyd.gv.at,
last access: 14 November 2018).
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Appendix A: Standardized anomaly model output
statistics (SAMOS)

For spatio-temporal ensemble postprocessing we followed
the approach of Dabernig et al. (2017) and Stauffer et al.
(2017b), which we summarize in the following. In contrast to
other statistical postprocessing methods, SAMOS uses stan-
dardized anomalies for both the response and the covari-
ates. This allows one to remove location-specific and time-
specific characteristics from the data and to estimate one
single regression model for all stations and forecast lead
times at once. For this study we closely follow the original
articles (Dabernig et al., 2017; Stauffer et al., 2017b) but
slightly modify the specification, especially for the temper-
ature SAMOS, to adapt to the different study area.

Observation climatologies. Two separate spatio-temporal
models have been estimated for 2 m air temperature obser-
vations and daily precipitation sums. Both models have ef-
fects to capture seasonal, altitudinal, and spatial climatolog-
ical features represented by (multi-dimensional) nonlinear
functions. The 2 m temperature observations are available at
an hourly temporal resolution. Therefore, additional nonlin-
ear cyclic effects have to be included to capture the diurnal
effects in the climatological estimates.

The spatio-temporal model for the 2 m temperature uses
the geographical location (longitude lon, latitude lat, and al-
titude alt), the “hour of the day” (hour), and the “day of the
year” (doy) as covariates and is specified as follows:

temperature∼N
(
µ̃y, σ̃ y),

µ̃y = f1 (hour,doy,alt)

+ f2 (hour,doy)+ f3 (doy, lon, lat)

+ f4(hour)+ f5(doy)+ f6 (doy,alt)+ f7 (alt) ,

log
(
σ̃ y
)
= g1 (hour,doy,alt)+ g2 (hour,doy)

+ g3 (doy, lon, lat)

+ g4(hour)+ g5(doy)+ g6 (doy,alt)+ g7(alt), (A1)

where f q and g q are up to three-dimensional smooth spline
effects. Cyclic P-splines are used for all effects depending on
the “day of the year” or the “hour of the day”; all other effects
use penalized thin plate splines with a varying number of
possible degrees of freedom. Following the same concept, the
spatio-temporal model for daily precipitation sums is defined
as

precipitation1/p
∼ L0

(
µ̃y, σ̃ y

)
,

µ̃y = f1(alt)+ f2(doy)+ f3
(
lon, lat

)
+ f4 (doy, lon, lat) ,

log
(
σ̃ y
)
= g1(alt)+ g2(doy)+ g3 (lon, lat)

+ g4 (doy, lon, lat) . (A2)

As for Eq. (A1), cyclic P splines are used for effects which
depend on the “day of the year”, while all others use pe-
nalized thin plate splines. The major difference to the tem-
perature climatology (Eq. A1) is that a left-censored logistic
response distribution L0 is used on power-transformed ob-
servations of precipitation1/p (p = 1.35; cf. Stauffer et al.,
2017b). The complexity of the linear predictors in Eq. (A2)
is lower than in Eq. (A1) as no effects for diurnal variation
have to be considered.

Model climatology. Similar spatio-temporal climatologies
as for the observations could be estimated for all quantities
from the EPS which are used as covariates in the SAMOS
models. This would have to be done for each quantity sep-
arately using a reasonably large data set of historical EPS
forecasts. However, we instead extract the model climatolo-
gies directly from ECMWF hindcasts. These hindcasts are
produced operationally twice a week and consist of 10+ 1
members using the same model version and model specifi-
cation as the current EPS. For each hindcast run the fore-
casts for the same date over the most recent 20 years are
computed. The hindcasts are designed to represent the cli-
matology of the current EPS model and are used to cali-
brate EPS forecasts and as input for postprocessing appli-
cations (e.g., Hagedorn et al., 2012, 2008). For our SAMOS
approach we can thus simply derive the empirical mean and
empirical standard deviation over a set of hindcasts to get the
climatological estimates µ̃x and σ̃ x required to compute the
standardized anomalies for covariate x (Eq. 9). Climatologies
for lead times when no hindcast output is available (between
the regular 6 h interval) are created using simple grid-point-
wise linear interpolation.

Hindcasts are produced every Monday and Thursday
(available Tuesday/Friday), computed 2 weeks in advance.
Taking hindcasts for ±2 weeks around the date of interest
yields eight independent hindcast runs with 11 members and
20 years of (re-)forecasts each, which yields 8·11·20= 1760
forecasts. With this large number of independent predictions
these climatological estimates are fairly robust. Due to the
4-week centered rolling window the climatologies automati-
cally adapt themselves to the prevailing season. Separate cli-
matologies for each forecast step are required to capture diur-
nal cycles (for temperature) and to account for changes in the
model climate with increasing forecast horizon such as drift-
ing means or increasing ensemble standard deviation. Thus,
for this study, 13 separate climatologies for the temperature
models ([+6h,+12h, . . ., +72h,+78h]) and 3 climatolo-
gies for the precipitation forecasts ([+30h,+54h,+78h])
are required.

Estimation of the SAMOS models (see Table 1). Equa-
tions (1)–(3) and (5)–(7) show the basic heteroscedastic mod-
els used for SAMOS_hom and SAMOS_het. The only modifi-
cation is to replace the response y and the covariate x with the
corresponding standardized anomaly y∗ and x∗ (Eq. 9). For
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Figure A1. Schematic concept of the SAMOS postprocessing
based on ECMWF hindcasts (black), ECMWF EPS forecasts (red),
and observations (orange). Background climatologies (gray) are
used to convert the data from the physical scale into standardized
anomalies (blue) used to estimate the regression coefficients of the
SAMOS postprocessing method. The SAMOS correction can be ap-
plied to the standardized anomalies of a new EPS forecast to obtain
spatial or spatio-temporal probabilistic forecasts (full distribution).
These results are used as input for the ECC approach.

the xSAMOS_het model the linear predictors in Eqs. (1)–(3)
are extended by simply adding additional covariates, result-
ing in a multilinear SAMOS model.

Once the regression coefficients of the SAMOS model
have been estimated, future ensemble forecasts can be cor-
rected by first computing standardized anomalies using the
same model climatology as for model training and correct-
ing the standardized anomalies of the ensemble forecast us-
ing the estimated SAMOS models. As the outcomes (µ∗i and
σ ∗i ) are on the standardized anomaly scale, they have to be
rescaled with respect to the observation climatology to ob-
tain physical values (e.g., ◦C or mm). The final predictive
distribution is thus

yi ∼D
(
µ∗i · σ̃y, i + µ̃y, i, σ

∗

i · σ̃y, i
)p
, (A3)

where D represents the normal distribution N in the case
of 2 m temperature postprocessing with p = 1 and L0 in the
case of the power-transformed daily precipitation sums’ post-
processing with p = 1.35.

Algorithm 1 presents pseudo-code for all steps. The same
is shown in Fig. A1 as a graphical representation of this pro-
cedure, visualizing the required data sets, the required steps,
and their dependencies.

Appendix B: Individual copula members

Figures B1 and B2 show the individual EPS members
(Fig. B1) and the corresponding re-weighted ensemble cop-
ula coupling members (Fig. B2) for the +48 h forecast for
10 March 2017 10:00 UTC as used to derive the probabil-
ities and expectation plotted in Figs. 10 and 11. For easier
comparison the NWP forecasts are bilinearly interpolated to
∼ 500×500 m2 to match the resolution of the postprocessed
predictions.
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Figure B1. Stamps for+48 h forecasts initialized 8 March 2017 00:00 UTC (valid for 10 March 2017 00:00 UTC). Individual EPS members
for 2 m temperature (a) and the corresponding copula members (b). Please note that the color scale for all members of one type (EPS/copula)
is identical, but the scales between the raw EPS and the results from the postprocessing differ.
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Figure B2. Stamps for+48 h forecasts initialized 8 March 2017 00:00 UTC (valid for 10 March 2017 00:00 UTC). Individual EPS members
for 1 h precipitation sums (a) and the corresponding copula members (b). Please note that the color scale for all members of one type
(EPS/copula) is identical, but the scales between the raw EPS and the results from the postprocessing differ.
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